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The Vlasov-like mean field kinetic equation for a classical electron plasma in the 
periodic field of an ionic lattice is solved in the high-temperature limit in two 
dimensions. The predictions for the one-electron density, the static structure fac- 
tor, and the long-wavelength charge fluctuation spectrum are compared to the 
results of extensive molecular dynamics simulations. The predicted shift and 
damping of the plasma oscillation mode are in reasonable agreement with the 
simulation data at intermediate couplings ( F =  e2/kB T~-1), but the agreement 
deteriorates as the temperature or the density is lowered, because mean field 
theory does not lead to the expected Kosterlitz-Thouless transition to the 
dielectric phase where electrons are localized. 

KEY W O R D S :  Classical electron gas; periodic potential; Vlasov 
approximation; plasmon mode; damping; shift. 

1. I N T R O D U C T I O N  

The classical two-component plasma made up of oppositely charged ions 
and electrons is particularly interesting in two dimensions (2D), where it 
undergoes a Kosterlitz-Thouless (KT) transition between a high-tem- 
perature plasma phase and a low-temperature dielectric phase. (1'2~ A fixed- 
ion version of the 2D two-component plasma in which the positive ions 
occupy the sites of a triangular lattice exhibits interesting single-particle 
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and collective dynamical behavior in the vicinity of the transition due to 
the gradual "recombination" of ions and electrons, which has been exten- 
sively studied by molecular dynamics (MD) simulations. (3'4) The fixed-ion 
model, which will be the subject of this paper, is isomorphous to a one- 
component (OCP) of classical electrons in a periodic field. In view of a 
theoretical analysis of the dielectric response and collective dynamics of the 
model, a mean field kinetic equation has recently been formulated. (5) 
General consequences of the mean field theory have been derived in 
paper I of this series for arbitrary D,  (6) while explicit solutions for the 1D 
case were obtained in paper II. (7) The main conclusions of the mean field 
analysis are that the model remains a conductor (i.e., stays in the plasma 
phase) at all temperatures, independent of dimensionality, and that plasma 
oscillations are damped by the coupling of the mobile electrons to the ion 
lattice even in the long-wavelength (k--*0) limit; the damping increases 
rapidly and the frequency of the plasmon resonance is shifted below the 
plasma frequency as the temperature is lowered. While the first of these 
conclusions contradicts the existence of a dielectric phase in 1D (8) and in 
2D, (2) the predictions concerning the dynamics of charge oscillations in 
1D (7) agree qualitatively with available MD simulation results in 2D. (3) 

In the present paper we extend the 1D analysis of mean field theory 
contained in paper II to the 2D fixed-ion model in the high-temperature 
limit and compare the predictions to extensive MD simulations carried out 
under identical physical conditions. This study is motivated by the need to 
gain a microscopic understanding of the influence of ionization equilibria in 
dense plasmas on the collective dynamics of the electrons; such equilibria 
can be modeled in purely classical terms in 2D due to the binding nature of 
the logarithmic Coulomb interaction. 

2. THE M O D E L  

We consider a two-component plasma made up of p ions and as many 
electrons per unit area carrying charges +e and - e ,  respectively. The 
Coulomb potential between equal charges is, in 2D, 

~ ( r )  = - e  2 l n ( r / L s )  (2.1) 

where Ls is an irrelevant scale length. The ion-electron potential must be 
regularized at short distances in order to avoid the collapse of opposite 
charges at low temperatures(9); as in ref. 4, we adopt the following poten- 
tial: 

riOie(r ) = ~PSR(r), r < f f  
(2.2) 

= -Pc( r ) ,  r > a  
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where the short-range part (SR) is chosen to be parabolic: 

r ) = e2[ln(a/Ls) -- �89 + �89 2) (2.3) 

This form ensures continuity of the potential and of the force at r = o. By 
adding two compensating uniform background charge densities +_ep, the 
total potential energy of the system is easily cast in the form 

N 

VN(r I ..... rN) = V0(r ,,..., rN) + U o + ~ VL(ri) (2.4) 
i = l  

where the r i are electron positions, V 0 is the potential energy of the 2D 
OCP of mobile electrons in a uniform positive background, U0 is the 
Madelung energy of the ion lattice, and VL(r) is the periodic potential of 
the ion lattice (L) seen by the electrons: 

VL(r)=f dr'~c([r-r'])Ip-~c~(r'-Rj)]+~i~(r)+~c(r ) (2.5) 
J 

where r belongs to the Wigner-Seitz unit cell WS centered on the site 
Ro=0 ,  and the sum is over all ionic lattice sites; in writing (2.5) we have 
assumed ~ < b, where b = (~/2 V/3)l/2a is half the distance between nearest 
neighbor sites, and a = (~p) 1/2 is the "ion-disk" radius. 

The Fourier components of the lattice potential VL(r) are 

VL(G) = p fws dr Vc(r) exp(iG �9 r) 

= -4~e2p(Jl(Go)/G3o),  

I~L ( O ) = rce2po2/4 

G ~ O  

(2.6) 

where G are reciprocal lattice vectors and Jl is the cylindrical Bessel 
function of order 1. 

A thermodynamic state of the model is characterized by the number 
density p, or equivalently by the dimensionless ratio o/a, and by the 
Coulomb coupling constant F =  eZ/kB T. For  the two-component system, a 
theoretical analysis of the static dielectric constant shows that the K T  
critical coupling is 4 in the zero-density limit. For  the present model, such 
an analysis is not yet available. However, MD simulations (3"4) indicate that 
the KT critical coupling goes to 2 when a/a goes to zero; in particular, the 
conductivity decreases by several orders of magnitude in the vicinity of this 
critical coupling. Since the MD simulations are carried out on finite 
systems, the above prediction regarding the KT transition must be con- 
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sidered cautiously. In fact, there are several scenarios that are consistent 
with the M D  observations. For instance, the conductivity might be very 
small between F =  2 and F =  4 (because there are very few free charges), 
but might strictly vanish only at F =  4. The present study is restricted to 
the high-temperature plasma phase (F~< 1), where mean field theory is 
expected to apply. 

3. P R E D I C T I O N S  OF M E A N  FIELD T H E O R Y  
AT H IGH T E M P E R A T U R E S  

The results of paper I for the static properties of the model are easily 
adapted to the 2D case. In the high-temperature limit, the one-particle 
density [p(r)]  solution of Eq. (I.3.10) reduces to 

p(r) = p{ 1 - / ~ [  Vc(r) - IT'L(0)] + O(/~2) } (3.1a) 

where 

VL(r ) -  I~L(0) = ~ I?L(G) exp(iG- r) 
Gv~0 

Jl(Ga) --4rtpe-~2 ~, -~ exp( iG- r )  (3.1b) 
0" G~0  

It is tempting to exponentiate the result (3.1a) and to renormalize it so 
that the integral of the exponentiated expression over WS remains equal to 
1, i.e., to set 

p(r) = const x exp{ - /~ [  VL(r) - VL(0)] } (3.2) 

The expressions (3.1a) and (3.2) will be compared to molecular dynamics 
results in Section 4. 

The main result of the mean field analysis in paper I is that the elec- 
tron density response function can be cast in the suggestive generic form 

kZT(k, co) 
z(k, co) = - t i p  k2 + Z2 T(k, co) (3.3) 

where g 2 is the square of the Debye screening wavenumber of the 
homogeneous OCP (Z2=2rcpe2/kBT=2F/a 2 in 2D) and the function 
T(k, co) may be formally expressed in terms of the electron trajectories in 
the self-consistent mean field [cf. Eq. (I.4.25)]. In the much simpler 
uniform background case, T(k, co) is related to the response function of a 
noninteracting gas with free-particle trajectories. 
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The static structure factor S(k) is proportional to the co = 0 limit of 
the response function (3.3), 

1 - 1  k2T(k) 
S(k)  = ~ (PkP --k > ~--- j~'--"-p Z(k,a)= O)- k 2 _1_ .~2 T(k)  (3.4) 

where the explicit form of T(k)=  T(k, co = 0) is given in Eq. (I.5.4). If the 
one-particle densities appearing in that expression are replaced by their 
high-temperature form (3.1), T(k) reduces to 

27zpe 2 
T ( k ) =  1--fl 3 ~ I-?L(G) Vr(-G)iG_ki--------~-t-O(fl4) 

G~O 

V [ J 1 (G--.G-G)J 2- 
= 1 - 32F 3 az2# ~ o.2a6G 6 IG - k l  2 + O(F4) (3.5) 

When F ~  0, the standard Debye-Hiickel formula, valid for the uniform 
background case, is recovered for S(k). The leading high-temperature 
correction to that limit is obtained by including the F 3 term in Eq. (3.5). 
Note that Eq. (3.5) is valid as long as k does not coincide with a reciprocal 
lattice vector (k v a G). However, T(G) is a well-defined quantity, as shown 
in Appendix B of paper II. 

For small k, S(k) may be expanded as 

S(k) = Z--~o 1 - k 7  + O(k4) (3.6) 

where the screening wavenumber ks is related to the isothermal 
compressibility. (1~ Combination of the mean field Eqs. (3.4) and (3.5) 
leads to the high-temperature result 

= r ( o )  

{ [Jl(ffG)]2 } 
= Z 2 1 - 32F 3 ~ ~72a6G------g-- ~- 0(/"4) (3.7) 

G:~0 

It was shown in paper I that T(0)> 0 for all F, independent of dimen- 
sionality, so that mean field theory implies S ( k ) ~  kZ/z 2 and hence that the 
system is a conductor at all temperatures; in the high-temperature limit ks 
reduces to ZD, while the leading high-temperature correction leads to a 
reduction of the screening wavenumber, i.e., a reduction of the screening 
capacity of the inhomogeneous plasma compared to its homogeneous 
counterpart. 

822/52/1-2-26 
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It is amusing to note that, while the exact mean field T(0) is strictly 
positive, its high-temperature expression in Eq. (3.7) vanishes when 

[J'(Ga)]z (ff~) 6 (3.8) r 3=32  ~ (Ga) s 
G ~ 0  

In the low-density limit a/a ~0, this leads to the estimate F ~ - 3.91 of the 
coupling at the plasma-dielectric transition, which is closer to F =  4 than 
to F =  2. Of course, this does not constitute a conclusive argument in favor 
of the former value for the KT critical coupling. Moreover, Eq. (3.8) 
predicts that the critical F increases with a/a, in agreement with recent MD 
results.(4) 

Turning now our attention to the dynamical response, we examine the 
predictions of mean field theory for the dynamical structure factor 

1 1 ~+~ 
S(k, co)= - 7rpfl-----~ Z"(k, co) =~-~ j ~ dtei~ t) (3.9) 

where, according to the fluctuation-dissipation theorem, Z" is the imaginary 
part of the density response function (3.3), while F(k, t) denotes the 
density-density correlation function (or intermediate scattering function) 

1 N 
F(k, t ) = ~  (pk( t )p_k(0)>,  Pk(t) = ~ exp[ ik-  ri(t)] (3.10) 

i = 1  

More specifically, we have evaluated the mean field expression for the long- 
wavelength limit of the normalized spectrum 

S(k, co) 
s(co) = lira - -  (3.11) 

k~o S(k) 

In paper I it was shown that s(co) can be cast in the generic form 

I(co) 
s(co) - 7rco{ [1 + R(co)] 2 + i2(co) } (3.12a) 

R(co) = Re{ Wl(co) + Wz(co)} (3.12b) 

/(co) = Im{ Wl(co ) + W2(co)} (3.12c) 

Explicit expressions for the functions WI(O) ) and W2(co) in terms of the 
electron trajectories in the self-consistent periodic potential are given in 
Eqs. (I.6.7), (I.6.8). Detailed results for the 1D case are presented in 
paper II. The situation in 1D is relatively simple, because of the simplicity 
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of the confined and unconfined trajectories of the electrons in the periodic 
self-consistent field. The main result of paper II is that s(e)) exhibits a dam- 
ped plasmon resonance, which is shifted below the plasma frequency cop. 
The shift and the damping are proportional to F 3/2 (where F=13e2a in 
1D). The collective plasmon mode vanishes in the limit F--+ oo. 

The situation is considerably more complicated in 2D, because of the 
great complexity of the electron trajectories. However, the trajectories that 
yield the dominant contributions to Wl(CO) and W2(c0) in the high-tem- 
perature limit are the high-energy trajectories in the periodic lattice poten- 
tial Vc(r) defined by (3.1b), which is the limit form of the full self- 
consistent potential V(r). To study these contributions, it is convenient to 
introduce the sequence of auxiliary potentials 

VL, s(r) = / ) c ( 0 ) +  2 ~, ~ IYL(pGj) cos (pGj - r )  
/ = I  p = l  

where the G i are the s smallest reciprocal lattice vectors of the form 

(3.13) 

Gj = (mjA + njB) 

with A and B the basis vectors of the reciprocal lattice, and (mj, nJ) pairs of 
mutually prime integers; the corresponding G s define a set of orientations 
that are all different. The high-temperature forms of Wl(c0) and W2(co) will 
be calculated for VL.~.(r) and, the limit s -+ 0% which leads back to the full 
lattice potential VL(r), will be taken at the end. 

Let rot(t; r, v) and vct(t; r, v) denote the position and velocity of a 
particle at time t calculated from the equations of motion in the force 
field of the potential VL.,(r), with initial conditions rc~(0;r, v ) = r  and 
vcr r, v) = v. Then, as long as the initial velocity is not orthogonal to any 
of the Gs, the velocity increment at time t is given by a standard pertur- 
bation expansion around the free particle trajectory ro(t; r, v ) = r + v t ,  
namely 

2 s Gj 
u(t) = vc/(t; r, v) - v = ~ v  j~'l= (G-~" 0) pZ= IYL(pGj) 

x [cos (pGj ' r ) - cos (pGj . r+pGj . v t ) ]  + 0  -~ 

(3.14) 

valid when v --+ oo for fixed 0 = v/v and 0- Gj ~ 0 for all j. However, as soon 
as 0 is "almost" orthogonal to one of the Gj, Eq.(3.14) becomes 
inapplicable. In this case, the motion projected along Gj cannot be studied 
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through a perturbative treatment of the potential 2 ~-p=l~ ~'L(pGj) 
cos(pGj, r) because the latter is no longer small compared to the kinetic 
energy m(v. G;j)2/2. In the Appendix we analyze this motion in the limit 
where the component of the initial velocity orthogonal to Gj goes to 
infinity. It is these trajectories that yield the dominant contributions to 
Wl(CO) and W2(CO), which are O(1/v) and are explicitly given in the Appen- 
dix. The resulting expressions for R(CO) and I(CO) read 

2 
R(CO) = COP - -~7 + r3/2r(co) + o(1"3/2) 

I(o)) = F3/2i(CO) -1- o(F 3/2) 

where 

(3.15a) 

(3.15b 

r(CO) = ~ rj(CO) 
j = l  

_ 1 Re ~ p dr dvj lim dt e T M  tlt 
TC 1 / 2 a 3 C O p  j = 1 S co ti ~ 0 + 

x [x j ( t ) - - vJ - -x j ] [v j ( t ) - - v j ]  + ~  (1--iCOt)[vj(t)--vj] 2 

(3.16) 

and i(CO) is equal to the imaginary part of the same expression. The 
integrals appearing in (3.16) are evaluated by the techniques developed for 
the 1D case in paper II. Details, as well as final expressions for the rj(CO) 
and corresponding ij(CO), are contained in the Appendix. Here COp= 
(2~pe2/m) 1/2 is the 2D plasma frequency. 

As in 1D, the leading correction to the uniform background limit in 
Eqs. (3.15) is proportional to F 3/2. When F ~ 0 ,  the dynamical structure 
factor (3.12a) reduces to the usual uniform Vlasov limit, i.e., a pair of 
&functions centered on CO = +COp. The leading high-temperature correction 
leads both to a broadening and a shift of the position of the two conjugate 
plasmon peaks in s(co) relative to cop. If restriction is made to the 
immediate vicinity of the peak at positive frequencies, s(CO) may be 
approximated by a Lorentzian centered on 

COm= COp[1 -- F3/2(r(COp)/2)] (3.17) 

where r(cop) m u s t  be calculated numerically from the expressions listed in 
the Appendix. The resulting r(cop) is always positive, so that the plasmon 
mode is shifted below the plasma frequency COp by the coupling of the elec- 
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trons to the ion lattice. As the temperature is lowered, the shift increases as 
/~3/2. For co close to co m, set co = corn "~ /~3/2y; then 

COpi(cop) (3.18) 
S(CO m "~ F3/2y) 7rF3/2[CO2pi2(cop ) + 4V 2 ] 

which represents a Lorentzian of full-width at half-maximum 

Am = F3/2copi(cop)  (3.19) 

while the height of the peak is 

1 
S( (Om) = ZCF3/2CO pi(COp ) (3.20) 

Thus, the plasmon is seen to be damped even in the limit of infinite 
wavelength due to the "friction" of the electrons against the ion lattice 
(electron-ion collisions). This damping mechanism vanishes in the uniform 
background limit, but becomes increasingly important as the temperature 
is lowered, because electrons get "trapped" by individual ions; the term 
"recombinational damping" was coined in ref. 3 for this mechanism. Results 
(3.18)-(3.20) are of a form identical to that found at high temperatures for 
the ID case, (7) the only differences being the numerical values of r(cop) and 
i(%). 

In view of the fact that the mean field calculation of this section incor- 
porates only the leading correction to free-particle motion, it is important 
to ascertain the range of validity of its predictions by explicit comparison 
with the results of "exact" molecular dynamics simulations carried out on 
the same model. (4) This is the purpose of the next section. 

4. C O M P A R I S O N  W I T H  M O L E C U L A R  D Y N A M I C S  R E S U L T S  

In order to test the predictions of mean field theory for the one-par- 
ticle density p(r), the static structure factor S(k), and the long-wavelength 
charge fluctuation spectrum s(co), we have extended our previous MD 
simulations of the model (4) to higher temperatures. The earlier simulations 
were more concerned with the Kosterlitz-Thouless "localization" trans- 
ition, both for the present model, embodied in Eqs. (2.2)-(2.3), and for a 
hard-core version of the model (3) in which the ions strongly repel the elec- 
trons for r < cr. However in the corresponding range of coupling ( F >  2) the 
high-temperature results of the mean field analysis are not expected to be 
applicable a priori, so that simulations at higher temperatures ( F -  1) are 
clearly required to allow a meaningful comparison. It must be realized, 
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however, that MD simulations tend to become inefficient at high tem- 
peratures, since the occurrence of increasingly "hard" collisions between 
particles forces the use of shorter and shorter time steps in the numerical 
solution of the finite-difference version of the equations of motion. Such a 
shortening of the time step is incompatible with long trajectories in phase 
space, which are needed to obtain good statistics, particularly for the 
collective charge fluctuation spectrum. We have compromised by exploring 
the range 2 > F >  l, using the standard Verlet algorithm m) and rectangular 
simulation cells containing N =  120 or 168 electrons (and as many ions) 
with periodic boundary conditions. Nearly square rectangular cells, rather 
than the more natural hexagonal cells used in the hard-core simulations, (3) 
were employed in the present work in order to simplify the Ewald sum- 
mations of the Coulomb interactions over periodic images of all the 
charges. Several densities were explored, namely a/a= ,,,/2/8, ,,/2/4, x/Z/Z, 
and 1. If co 0 = ( e 2 / m a 2 )  1/2 denotes the vibration frequency in the harmonic 
potential well (2.3) of the ion-electron potential, these densities correspond 
to ratios COo/O~ p = 4, 2, 1, and x/2/2. Most runs extended over a total time 
interval of 1000~Op 1 after equilibration, which correspond typically to 105 
time steps. A summary of the characteristics of the MD runs is given in 
Table I. 

The angular-averaged one-particle density has been calculated inside 
the Wigner Seitz disk of radius a. A comparison with the high-temperature 
prediction (3.1a) of mean field theory is made in Fig. 1. The exact p(r) is 
significantly more localized than the linearized mean field expression (3.1a), 
especially at lower temperature or lower density. Note, however, that the 
exponentiated result (3.2) agrees much better with the MD data, even at 
F = 2. The observed differences are due to the effects of the linearization of 
the mean field solution and to the electron-electron correlations, which are 
not included in the mean field treatment. 

Table I. Characteristics of Molecular  Dynamics Runs" 

a/a F N t oJp A t co~ tm 

0.177 1.022 105 10 -2 103 
1.934 105 10 -2 103 

0.354 0.982 105 10 2 103 
1.943 10 s 10 -2 103 

0.707 1.096 105 10 -2 103 
1.0 1.001 105 10 -2 103 

~ N, is the total number of time steps At; tm= N~ At is the total time interval covered by the 
run. 
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c. 
, ,__.  

0 

0 .2 .4 .6 .8 

p / a  

Fig. 1. One-electron density p(r) versus r/a for ~r/a=0.354 and F =  1 (upper curves) and 
F =  2 (lower curves). The dots are the MD data, while the curves are the high temperature 
mean field result (3.1a) and the exponentiated form (3.2); the latter result falls right on the 
MD data. 

Similarly, we have computed the angular-averaged static structure 
factor S(k) for wavevectors compatible with the periodic boundary con- 
ditions. Standard fluctuation theory leads to the following long-wavelength 
form ~3~ of S(k): 

k 2 

S(k) ~ ~ o Z~(1 + k2/k~) (4.1) 

where the screening wavenumber k s is related to the isothermal com- 
pressibility Zr by k~ = Z2D(Zr/Z~)), Z~ ) being the compressibility of an ideal 
gas at the same temperature and density. In the mean field approximation, 
)~r/g~)= T(0) according to Eq. (3.7). We have determined the screening 
wavenumber by fitting the MD data at small k to the limit (4.1). The 
resulting values are compared to the mean field predictions in Table II. The 
latter lie close to and slightly below the Debye wavenumber 2D, whereas 
the "exact" ratio ks/ZD first increases above 1 as the temperature is lowered, 
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Table II. Screening Wavenurnbers a 

G/a [" (ks/ZD)m.f (ks/ZD)M D 

0.177 1.022 0.992 1.092 
1.934 0.947 1.104 

0.354 0.982 0.995 1.092 
1.943 0.964 1.19 
4.46 0.344 0.557 

0.707 1.096 0.999 1.2 
1.0 1.001 0.99998 1.32 

"k,/)~D is the ratio of the screening wavenumber k, over the Debye 
wavenumber Zo = (2npe2/kB T) 1/2= (2F)1/2/a. 

t~  

tO 

S 
0 2 4 6 8 10 

q=k.a 

Fig. 2. Angular-averaged static structure factor S(k) versus q = ka for a/a = 0.354 and F =  1 
(upper curves) and F =  2 (lower curves). The dots are the MD data. For F =  1, the solid curve 
is the mean field result (3.4), which practically coincides with the homogeneous Debye-  
Hfickel result [i.e., with T(k)=  1]. For F = 2  the mean field result is represented by the lower 
curve; the homogeneous Debye-Hfickel result falls between the latter result and the MD data. 
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before decreasing at still lower temperatures due to incipient localization; 
k, is expected to vanish at the dielectric-plasma transition3 3) In the plasma 
phase electron-electron correlations lead to an increase of the screening 
power of the Coulomb gas compared to the mean field results, which only 
incorporate the ion-electron coupling. At F ~  1, the mean field structure 
factor deviates very little from the uniform background Debye-Hiickel 
limit S(k) = k2/(k 2 + g2), while the MD results lie above this limit for all k. 
The density appears to hardly affect S(k) for a given F, whereas the 
difference between mean field and MD results is more pronounced at lower 
temperature, as shown in Fig. 2. 

The quantity of main interest is the long-wavelength charge fluc- 
tuation spectrum s(0)), defined in (3.11). The MD simulations yield the 
intermediate scattering function (3.10) for wavevectors k compatible with 
the periodic boundary conditions, i.e., k = 2n(nx/Lx, ny/Ly), where L x and 
Ly are the side lengths of the rectangular simulation cell and nx, ny are 
integers which cannot be simultaneously zero. Due to the near-degeneracy 
(Lx 2 Ly) of our cells, averages may be taken over nearly equivalent k 
vectors. The k ~ 0  limit, i.e., s(0)), can only be obtained indirectly, by 
calculating the normalized electric current autocorrelation function J(t), 
which determines the frequency-dependent conductivity a (0) )=a ' (0) )+  
ia"(0)) and coincides with the memory function of the long-wavelength 
charge density autocorrelation function, (3) i.e., 

2a'(0)) 
s(0))-  [0)_  2~cr,,(0))]2 + [2rra,(0))]2 (4.2) 

By identification with (3.12a), we find that the mean field expressions for 
a'(0)) and a"(0)) are 

2~a'(0)) = col(co) (4.3a) 

2~a"(0)) = -0)R(0)) (4.3b) 

In particular, since it has been shown (6) that R(0))= O(1/0) 2) and 1(0))= 
O(1/of) for small 0), the static conductivity predicted by mean-field theory 
diverges, and correspondingly lim,o~oS(0))=0 due to the absence of 
dissipation originating in electron-electron collisions. 

For each of the runs listed in Table I we have computed J(t) and 
F(k, t) for several wavenumbers k. Typical examples are shown in Figs. 3 
and 4. The value of J(t) is affected by considerable statistical noise, but is 
seen to decrease monotonically more and more slowly as a/a increases. The 
spectra s(0)) and S(k, 0))/S(k) are obtained by numerical Fourier transfor- 
mation. A partial check of the numerical accuracy of the results follows 
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Fig. 3. Normalized electric current autocorrelation function J(t) versus o)vt, as calculated by 
M D  for a/a= 1 and F =  1 (upper curve); and a / a=0 .35 ,  F =  1, and F = 2  (lower curve). 
Notice the appearance of small oscillations in the latter case, characteristic of incipient 
electron localization. TM 
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Fig. 4. 

~ . %  
MD-generated normalized density autocorrelation function F(k, t) versus ~%t for 

a/a = 0.354, F =  1, and q = ka = 0.275. 
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from the usual frequency sum rules. The familiar second moment sum rule 
is 

7o-~ = f + ~ 0)2 S(k, 0)) kBT k 2 
- o o  S ( k - - - ~  d o )  = - -  - -  , 2 ( 4 . 4 )  m S(k) k+o 0)p 

while the fourth moment sum rule reads in the present case 

= 0)4 S(k, 0)) 
S(k) d0) 

- S ( k )  k2 

kBT f 
+ m 2 Jws dr p(r)(k.  V) 2 VL(r) 

k B T f  } 
+ m 2 3 g(r)(k.V) 2 ~ c ( r ) [ 1 - e x p ( i k . r ) ]  dr (4.5) 

where the periodic potential VL(r) of the ion lattice is given by Eq. (2.5), 
�9 c(r) is the Coulomb potential (2.1), p(r) is the one-particle density of the 
electrons, and g(r) is the electron-electron pair distribution function. Up to 
the order k 2 included, 0)2 and 0) 4 are isotropic functions of k. Furthermore, 
these moments will be computed approximately, with a good accuracy, by 
replacing the various functions involved in (4.4), (4.5) by their angular- 
averaged counterparts. The corresponding expression for 0)4 is greatly 
simplified: 

.--7~ -~ 3 + 1 + ~  Ap(r)rdr+ [g ( r ) - l ] J2 (kr )  d-dr 

a2 
k~o 1 + ~ ~-7 Ap(r)r dr (4.6) 

where Ap(r) = p(r) - p. 
Results based on expressions (4.4) and (4.6) have been compared to 

the second and fourth frequency moments directly calculated from the 
computer-generated spectra; discrepancies do not exceed a few percent, 
thus giving us confidence in the MD data (with the limitations exposed in 
footnote 5). 

In the discussion of the results, we first concentrate on the long- 
wavelength spectra s(0)), which may be compared directly to the mean field 
predictions of Section 3 and more specifically to the high-temperature 
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Table III. Mean Field Lorentzian Width Parameter i(tup) 

a/a 0.177 0.354 0.707 0.952 
i(~op) 0.297 0.238 0.010 0.00062 

Lorentzian form (3.18). The inputs needed are the values of i(cop) and 
r(cop), the expressions for which are given in the Appendix. The numerical 
evaluation of i(cop) is relatively simple, and results for the densities of 
interest are given in Table III. The calculation of r(cop) is more involved, 
but a simple sum-rule argument based on Eq. (4.4), with a Lorentzian 
suitability truncated at co = 0 [where the mean field s(co) vanishes] and at 
co = 2co m [where co2s(co) goes through a minimum] leads to the estimate 
r(cop) = i(cop)/7~, which we have adopted for the comparison with the MD 
data. 4 Comparisons for F -  1 and for two densities are made in Figs. 5 and 
6. Both sets of results exhibit a negative shift of the plasmon resonance with 
respect to COp. The width of the spectrum (i.e., the damping of the electron 

4 We have checked that r(~op) behaves like i(COp) when a/a ~ O. For finite values of a/a, one 
should have i(o)p)/g<r(e)p)<i(o)p). Note that, for a/a sufficiently large, an accurate 
calculation of r((Dp) is not  essential for the comparison with the M D  data, because r(Ogp) is 
then very small and the M D  simulations do not  allow us to distinguish between o) m and ~%. 

2 

I 

0 0 .5  1.0 1.5 2 

Fig. 5. Long-wavelength charge fluctuation spectrum s(~o) versus m/e)p for ~r/a = 0.354, F =  1. 
(- -) M D  data; ( ) high-temperature mean field result (3.18). 
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Same as Fig. 5, but for or/a=0.707, F =  1; insert: same curves in the vicinity of the 
maximum. 

plasma oscillations) appears to be overestimated by the high-temperature 
mean field approximation at the lower densities, but slightly 
underestimated in the limit ~ a .  The damping and the shift of the 
plasmon mode decrease with increasing density; the peaks are already very 
sharp at a/a = 0.71. This dramatic reduction of the damping is a direct con- 
sequence of the observation made in ref. 4 that the periodic potential of the 
ions perturbs the electrons only weakly when a/a--* 1, so that the electron 
plasma behaves practically as an OCP in a uniform background. In that 
limiting case, conservation of the total momentum of the electrons would 
imply the reduction of s(co) to a pair of &functions centered on +_cop.~12~ 
As expected, the difference between the mean field and "exact" results for 
s(co) is much more pronounced at lower temperatures, as illustrated in 
Fig. 7. This is not a surprise, since the mean field results incorporate only 
the leading high-temperature contribution. However, mean field theory 
reproduces the main qualitative trends, in particular the increasing shift of 
the characteristic plasmon frequency (LI m below COp. This shift is similar to 
that observed within the hard-core model, (3) and may be interpreted in 
terms of a partial recombination (or electron localization), which reduces 
the number of "free" electrons participating in the collective plasma 
oscillations and hence the effective plasma frequency. The effect is opposite 
to that observed in dense electron-proton plasmas in 3D, where the 
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Fig. 7. 

0.5 

0 0 , 5  l 1,5 2 

Same as Fig. 5, but for a/a=0.354,  F = 2 ;  note that the Lorentzian approximation 
(3.18) for the mean field is valid only in the vicinit of the maximum. 
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Fig. 8. MD-generated dynamic structure factor S(k, o))/S(k) versus ~/~Op for a/a=O.177, 
F =  1, and, from left to right, peak positions for q = ak =0;  0.275; 0.389; 0.550; 0.615; 0.778; 
and 0.825. 
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Fig. 9. Dispersion curves ~o(k) for the plasmon resonance frequency as a function of q = ak, 
as determined from the peak positions of the MD-generated S(k, co) at F =  1; ( 0 )  er/a= 1; 
(�9 G/a = 0.35; (&)  ~r/a = 0.177. (-)  The classic Vlasov result for the homogeneous OCP. 

plasmon resonance is shifted above  (pp. (13) This difference may be ascribed 
to the binding nature of the 2D Coulomb potential at large distances, 
which does not carry over to 3D. 

We made no attempt to extend the mean field calculations to finite 
wavenumbers because of the considerable technical difficulties involved. 
Typical MD results for S(k, co) at several wavenumbers k are shown 5 in 
Fig. 8, and the corresponding dispersion curves for three densities are com- 
pared in Fig. 9 to the classic Vlasov result for the electron plasma in a 
uniform background (i.e., the OCP). The periodic field of the ions is seen 

5 These results can be used for estimating s(co) by extrapolation methods. The spectra 
S(k, co)/S(k) (for small k) are represented by Lorentzians with a good accuracy. Therefore, 
their peaks have heights that are inversely proportional to the damping. The measured 
values of the damping at finite k are well fitted by the expression '/0 + 6L(k), where 70 is the 
residual damping at k = 0 and 5L(k) is the Landau damping. The fit value of Y0 leads to a 
peak of s(~o) that is 30% smaller than the result obtained from 3(0. This disagreement 
might be due to the considerable statistical noise in ,I(t), and also to finite resolution effects 
arising from the tightness of the peak. This suggests that our indirect calculation of s(co) 
leads to a relatively large uncertainty in the height of the peaks. The corresponding uncer- 
tainty relating to the wings of the spectrum is surely much smaller, as illustrated by the good 
second and fourth moments determined from MD data. Note that the mean field prediction 
regarding s(com) is in reasonable agreement with the M D  extrapolated value. 
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to have little influence on the dispersion curve at intermediate couplings 
( F - 1 ) ,  except for a general downward shift at the lower densities. In 
particular, the present model does not lead to the oscillatory dispersion 
observed with the hard-core model, ~3) which may be ascribed to the 
stronger perturbation of the electron trajectories induced by the ionic 
lattice in that case. 

5. D I S C U S S I O N  

In this series of papers we have presented the first systematic 
investigation of a Vlasov-like kinetic equation for a plasma in a periodic 
field. The solution of the equation presents considerable technical dif- 
ficulties, but a number of general results can be obtained, including the 
absence of a dielectric plasma transition or the form of the static structure 
factor. As is generally the case for a mean field theory, general (qualitative) 
results are independent of dimensionality, but explicit calculations of 
specific properties, such as the long-wavelength charge fluctuation spec- 
trum, are relatively easy in 1D only. In the present paper we have confron- 
ted the mean field predictions with MD simulation results in 2D. This com- 
parison is limited by the fact that MD simulations cannot in practice be 
extended below F-~ 1, while the complexity of the mean field theory allows 
only the explicit calculation of the dominant high-temperature deviations 
from the uniform background limit, which are O(F 3) for the structure fac- 
tor and the screening length and O(F 3/2) for the charge fluctuation spec- 
trum s(~o). This means that the validity of the mean field results is a priori 
limited to F <  1. Moreover, since the perturbation due to the periodic field 
of the ions is strongest at low density, the high-temperature limitation is 
a priori more severe in that regime. Taking into account the above restric- 
tions and the uncertainties specific to the MD indirect calculation of s(co), 
the quantitative predictions of the mean field theory for a coupling as 
strong as F~- 1 turn out to be reasonable. The latter faithfully reproduces 
the general trends observed in the MD results for the shift and damping of 
the plasmon mode. The excessive damping predicted by mean field theory 
at low densities is probably a direct consequence of the additional 
limitation to the dominant high-temperature contribution. When a/a 
approaches 1, the mean field predictions become more accurate. However, 
the mean field damping is less than that observed in the MD results, as 
one would expect, since electron-electron collisions lead to an additional 
damping mechanism not included in the kinetic theory. We believe that, in 
view of the encouraging agreement observed for F-~ 1, mean field theory 
should be very reliable at higher temperatures. 
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A P P E N D I X  

In this appendix we derive the high-temperature expressions (3.15a) 
and (3.15b) for R(r and /(co). For this purpose, we first study the high- 
energy trajectories of one electron in the auxiliary potential VL, s(r) defined 
by Eq. (3.13). This allows us to compute the dominant contributions to 
Wl(CO) and W2(co ) in the high-temperature limit. The resulting high-tem- 
perature expansions of R(r and/(co) are then obtained. Furthermore, the 
expressions (3.16) of the functions r(co) and i(r which are involved in 
these expansions, are reduced in favor of more explicit and simpler 
formulas. For notational convenience, we set r ( t ) - rcM;  r, v) and v ( t ) -  
v~.~(t; r, v). 

The high-energy trajectories with an initial velocity v nonorthogonal 
to any of the Gj have been studied in the text. The cases where v is 
"almost" orthogonal to Gi (1 ~< i<~s) can be treated as follows. Let (x, y) 
be the orthonormal Cartesian frame where the unit vector in the x direc- 
tion is (~i. We want to investigate the behavior of u ( t ) = v ( t ) - v  when 
Ivy[ ~ o% vx kept fixed. Integrating the equations of motion, we obtain 

u(t)= 1 ~t ,c~VL.s 
--mO 0dt ar (r(t')) (A1) 

Since the force -#VL,,/Or is bounded, we infer from (A1) 

lu(t)l ~<--t ,~wsm Sup (A2) 

The upper bound (A2) does not depend on the initial velocity, so [u(t)] as 
well as Ux(t) and uy(t) remain bounded (at fixed times) when Ivyl-+ oe. 
Furthermore, the conservation of the energy gives 

1 
vvuu(t)=l" m [ VL,,(r)-- VL.s(r(t))] --~uZ(t)--VxUx(t) (A3) 

from which we obtain by using (A2) 

2 t 2 ____[2UwPs(aVL * ,~]2 [v, uy(t)l <~-- Sup [-I VL,,(r)l ] + 
m r~wS ~m~m 2 ~ J J  

+ iVxl t Sup ( aVL, s ~ (A4) 
rn,~ws ~r / 

Since the upper bound (A4) does not depend on vy, [uy(t)l remains boun- 
ded by const/Ivyj when Ivy[ -~ ~ .  This implies 

vy(t)=vy+O(1/vy), y(t)=y+Vyt+O(1/Vy) (A5) 

822/52/1-2-27 
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when IVy4 --+ oo. Taking into account (A5), the equation of motion along 
the x axis becomes 

d2x 
m - - ~  (t) = 2 i pG~ 12c(pG~) sin[pG~x(t)] 

p = l  

+2 i i 
j = l  p = l  
j q - i  

x sin(pGjxx(t) + pGjyy + pGjyvyt) 

+ O (A6) 

Neglecting terms O(1/Vy), we then see that the calculation of x(t) is 
reduced to a purely one-dimensional problem, where a particle is submitted 
to the force deriving from the potential 

Ui(x) = 2 i IT"L(pGi) cos(pGix) (a7) 
p = l  

and to time-dependent forces oscillating rapidly in time with frequencies 
proportional to Vy. The corresponding motion can be studied by a pertur- 
bative treatment of the time-dependent forces(~4): the first corrections to the 
unperturbed motion in the potential U~(x) are O(1/vy) for the velocity and 
O(1/v2y) for the position. Thus, we finally have 

Vx(t) = re(t) + O(1/Vy), x(t) = x~(t) + O(1/Vy) (A8) 

where (xi(t), vM)) are the position and the velocity of a particle moving in 
U~(x) with the initial conditions x~(0)=xi=r"  ~;i and vi(O)= vi=v" ~i. 
Both Eqs. (A5) and (A8) represent the laws of motion in the limit IVyl --+ oo 
(t and vx being kept fixed). 

Now we turn to the high-temperature forms of W~(co) and W2(a~). We 
first consider the case of Wl(~O). Before taking the high-temperature limit, 
it is convenient to transform the expression (I.6.7) of Wl(o~) in the 
following way. Performing an integration by parts in ~ dt .... we find 
[cp(v) = (flm/2rc) exp( -- flmv2/2)] 

'fw wl(~o) = ~ z~, dr dv p(r) ~o(v) 
S(~ 2 

• ~ lim ~ dtexp(ieot-qt) [r(t)-r]'v(t)} (A9) 
( t l  --, 0 + 
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which becomes, after introducing u(t), 

2 30 Wl(~ --~ 2-]-~2 fW drdvp(r) qo(v)~ lim fo dtexp(i~ot-~t) 
T S |  { r t ~ 0  + 

[ fo J} x t v ' u ( t ) +  dt'v'u(t')+ dt'u(t)'u(t') (A10) 

Furthermore, the conservation of the energy can be written as 

1 1 
v" u(t) = - -  [ V ( r ) -  V(r(t))] - ~  u2(t) (All)  

m 

Multiplying both sides of (All)  by p(r) ~p(v) and taking the average over 
WS | N2, we obtain 

fw 1 fw dr dv p(r) r u2(t) (AI2) s| dr dv p(r) ~~ --2 s.~2 

where we have also used Lemma L1 of paper I, which implies that 

fws| ~2 dr dv p(r) ~o(v)[ V(r) - V(r(t))] = 0 

Using (A12) in (A10), we rewrite W1(r as 

{ Wl(r = - --P + Z2 dr dv p(r) r lira dt exp(icot - r/t) 
(O 2 T S| rt + 

[fo 1 ]}  x dt 'u(t ') 'u(t)+~(1-ioot)u2(t) (A13) 

In the high-temperature regime, the dominant contributions to Wl(~o) arise 
from the high-energy trajectories in the ionic potential VL(r). For technical 
reasons, it is convenient to first compute these contributions with the 
auxiliary potential VL, s(r) in place of VL(r ) and to take the limit x --+ oo at 
the end. For the high-energy trajectories with an initial velocity non- 
orthogonal to any of the Gj (1 <~j<<.s), we find from (3.14) 

lim Jo dtexp(ie)t-tlt) d t 'u ( t ' ) 'u ( t )+~ (1-ic~ u2(t) 
r / ~ 0  + 

= O  (AI4) 
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while for the high-energy trajectories with an initial velocity "almost" 
orthogonal to Gi, we find from (A5) and (AS) 

lim 
q ~ O  + 

dt . . . .  lim dtexp(icot-qt)  ( x i ( t ) - v i t - x i ) [ v i ( t ) - v i ]  
r i c O  + 

+ 2t~ (1 - icot)Evi(t) - v,] 2 + O (A15) 

Thus, if we look at the variations of lim,_o+ S~ dt.. .  with respect to 
the polar angle 0 of v, for v fixed high enough, we see that this quantity 
has 2s peaks located at (0j, 0j+x,  l<~j<<.s}, where 0 j - x / 2  is the polar 
angle of Gj. Since these peaks have heights and widths that are O(1) 
and O(1/v), respectively, their contributions to the angular integral 
Sg~ dO {lim,_o+ ~ dt--.} are O(1/v), The corresponding contributions of 
the other regions are O(1/v 2) and can then be neglected. Therefore, we 
obtain, after making the variable change 0 = 0 i + v j r  in the vicinity of each 
peak, 

~0 2;~ d0~lim(,~0+ f o  dt ' }  

;o = v j  ~=1 o~ dvj \,-0+lim dtexp(ioat-~t)  

{ [xj(t) - vjt - xfl(vj(t) - vii X 

• 
+ 2io~ 

(A16) 

Using (A16) in (A13) and taking the limit s ~ 0% we finally obtain 

(.0 2 F 3/2 
Wl(CO) = - --P -~ 

09 2 7~l/2a3(D p 

x ~ dr dvj lim dt exp(icot- r/t) 
j = l  S --oo \ r / ~ O  + 

{ Exj(t) - vjt - xj] [vj(t) - v j ]  X 

+ ~ ( 1 - - i ~ o t ) [ v i ( t ) - v j ]  2 + o ( r  3/2) (A17) 
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(in order to test the validity of the present calculation, we have checked 
that the integral ~~176 dv~ ... as well as the series S'.T ~... do converge). A 
similar analysis of ~1~2(co ) shows that W2(co) is O(F2). Therefore, up to the 
order 1 "3/2 included, R(m) and I(m) are entirely determined by W~(co). 
Replacing W~(co) by (A17) in (3.12b), (3.12c), we then find the high- 
temperature expansions (3.15a), (3.15b) of R(co) and I(~o). 

The expression (3.16) of rj(e)), as well as the corresponding expression 
of ij(co), can be simplified as follows. Since ~T~ dvj.., only depends on xj, 
the integration upon y; in ~ws dr ..- can be easily performed. The remaining 
integral upon xj involves the product of ~ dvj.., by a function of xj 
which is the reunion of straight segments. Using the symmetry and 
periodicity properties of ~o~ dvj..., we then find 

L=ar ;L lim a,... 

=4bN)/21o 'dx; IO~ I?  dr''" ~.-o+ (A18) 

with Nj = m} + n} - rnjnj and 2j = Jr/Gj = b v/3/(2 ,,//Nj) [2.4 i is the spatial 
period of the potential Uj(x)]. Furthermore, the quantity 

can be transformed using the same methods as those applied to the 
reduction of similar quantities in paper II. The final results are (r is the 
principal part) 

8bN]/2 ~ 
rj(co) = ~3/2mcopaSco 

x f~  dE{P(coT(E))I;;~E)dtcos(oot)vo(t)]2 
uj(o) 

lOT(E) (, T{ E) + dt sin(ot) vo(t) Jo dt cos(cot) vo(t) 

fr(E, fr~, 
+ dt' dt sin(cot - cot') Vo(t ) Vo(t' ) 

"JO ~t' 

fT(E) 
~o Jo dt v~(t)} (A19) 
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and 

with 

and 

iA~o ) = 
8bN)/2 { ~ [~o"+~/2)~/~dtvo(t)cos(cot)] 2 

7~l/2mc~ a5c02 n o (dT/dE)(E~, < ) 

[f,~/o~ dt Vo(t) cos(cot)] 2"~ 

n :1 (dT/dE)(En, > ) i 
(A20) 

T(E) = 

f~om(e~ dx {2 [ E- Uj(x) ] } - 

f]:i dx {2 [E-Uj(x)]} -'/2, 

1/2 
, E < u(~j) 

u(2j) < E 

(A21) 

( tg[e) T(E)], 
P(a~T(E)) = 

( c o t g [ ~ r ( E ) ] ,  
E <  U(2j) (A22) 
U(2j) < E 

The resonant energies En, < and E,, > are such that T(En, < )= (n + 1/2)n/co 
and T(E,, > ) =  nn/cn; Vo(t) is the velocity corresponding to the initial con- 
ditions Xo(0)= 0 and Vo(0)= { 2 [ E -  Uj(O)]/m } 1/2, and Xm(E ) is the turning 
point corresponding to the energy E, i.e., U(Xm(E) )=-E .  For deriving the 
above expressions, we have assumed that Uj(x) monotonically increases 
from Uj (0 ) to  Uj(2j) [the conditions E <  U(2j) or U ( 2 j ) < E  then corres- 
pond to confined or unconfined motions]. If this hypothesis is not satisfied, 
the previous expressions have to be slightly modified. 

Finally, let us conclude this Appendix by some comments regarding 
the expressions (A19), (A20). First, the latter are well defined, i.e., the 
integral ~ (o)dE. . .  and the series Z , ~ o  ..- and ~2n~176 1 . . .  do converge. Indeed, 
the integrant of ~(o)dE... decays like 1/E 3/2 when E ~  0% while the 
generic terms of the previous series decay exponentially (7) when n--* ~ .  
Although the potential Uj(x) defined by Fourier series (A7) can be 
expressed in terms of elementary functions, the various quadratures 
involved in (A19), (A20) cannot be analytically computed, except when 
a = 0. In the latter case, Uj(x) reduces to the reunion of arcs of parabolas, 
and (A19) and (A20) become proportional to the explicit expressions 
(II.4.45) and (II.4.46) given in paper II. For a C0, the resonant energies 
En, < and En,>, as well as the other ingredients of (A20), are determined 
numerically; since the series ~2~=o ... and Z2=1... converge exponentially 
fast, ij(COp) is then calculated with a good accuracy be keeping only a few 
terms in these series. The numerical calculation of ri(COp) is more cumber- 
some, and not really essential, for the reasons given in the text. The quan- 
tities ij(OOp) are found to decay rapidly when j increases [this is due to the 
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fact that  Uj(x)  then becomes more  and more  flat and small] .  F o r  the 
values of a considered in the text, i (o)p)= ~ = 1  t)(cop) is practical ly deter- 
mined by the first three groups  of terms: 

t 1, G I = A  
j = 2, G2 = B (Nx = N2 = N 3  = 1 ) 

3, G 3 = A + B  

j =  
4, G 4 = A - B  

5, Gs  = 2A + B 

6, G 6 = A + 2B 

(N4 = N5 = N6 =- 3 ) 

t 7, G T = 2 A - B  
8, G8 = A - 2B 

9, G9 = 3A + B 

J =  I I 0 ,  G10 = A + 3 B  

11, G l l = 3 A + 2 B  

12, G12 = 2A + 3B 

(N7 . . . . .  N12 = 7) 

Fo r  a = 0, i.e., for point  ions, the series ~ =  1 ij(o)) and Z~= 1 r~(co) diverge. 
In this case, the present  per turba t ive  analysis of  the contr ibut ions  of  the 
high-energy trajectories is not  applicable,  because however  high its energy, 
one electron m a y  be scat tered in a rb i t ra ry  directions by one ion if the 
impact  distance of the e lec t ron- ion  collision is small enough. The  functions 
(R(e)) + copz/cJ) and I(c~) should then go to zero slower than  F 3/2 in the 
h igh- tempera ture  limit. 
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